
526 X-RAY ABSORPTION FACTORS FOR ELLIPSOIDAL CRYSTALS 

Subst i tut ion of (42) into (38) now gives s and so which, 
in this case, immedia te ly  produce the n ,  through (24) 
since R -1 is the ident i ty  operation. Because reflection 
to a given point  on the film occurs twice, correspond- 
ing to the _+ ambigui ty  in equat ion (42), both dif- 
fraction conditions must  be considered in an absorp- 
tion correction. 

I would like to express to Prof. B. C. Carlson my 

appreciat ion for his several, valuable  discussions con- 
cerning coordinate systems. 
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The assumption of an incident plane wave is shown to be not adequate for single-crystal experiments 
of X-ray diffraction (Laue case). A dynamical theory of diffraction is formulated for a general type 
of monochromatic incident wave. Fundamental  aspects of wave behavior are discussed in terms of 
wave-bundle considerations. Diffraction phenomena are classified by A 0 (an angular width of single- 
crystal reflection) and /20 (a width in which the angular spectrum of an incident coherent wave 
takes an appreciable value). If  A0 >~ £20, a plane-wave assumption is adequate. This is usually the 
case for electron diffraction. If  A 0 ~ £20' a spherical wave assumption is more appropriate and most 
of X-ray cases fall under this alternative. Furthermore, a criterion is given to distinguish between 
Fresnel and Fraunhofer diffraction in a crystalline medium. 'Pendell6sung' fringes of X-rays (Kate 
& Lang, 1959) can be interpreted as Fraunhofer diffraction, while those of electrons are observed 
in a Fresnel diffraction region. The essential features of section patterns, particularly 'hook-shaped' 
fringes, can now be explained. 

1. Introduction 

In  previous papers the first observations of X- ray  
PendellSsung fringes were reported (Lung, 1959; K a t e  
& Lung, 1959). In  addition, new types  of diffraction 
fringes were obtained in section topographs under  the 
experimental  conditions fully described. These fringes 
are essentially due to interference between two kinds 
of crystal  waves which correspond to different branches 
of the  dispersion surface. Thus they  have to be ex- 
plained by a dynamical  theory  of diffraction. 

'PendellSsung'  interference effects were discovered 
first in electron-microscope experiments  and could be 
well explained by dynamical theory.* Thus it seemed 
quite na tu ra l  to apply  this theory  to X-rays  because 
it is general ly accepted t ha t  the theory  is essentially 
the same for both electron and X - r a y  diffraction. 
However,  as shown briefly in the previous paper  
(Kate  & Lang, 1959), section pa t te rns  cannot  be 
interpreted in a s t ra ight forward  manner  by the usual 
dynamical  theory.  In  fact,  they  imply t ha t  we have  
to consider a divergent  coherent wave instead of an 

* A detailed historical survey is given in the previous paper 
(Kate & Lung, 1959). 

ideal plane wave as the incident wave (Kate ,  1960b). 
The same is t rue  for the general X - r a y  case, as shown 
in Section 2 by a simple argument .  Hence, we mus t  
formulate  the dynamical  theory  for a general type  of 
incident monochromatic  wave (Section 3). This is the  
main object of the present  paper.  In  the  following 
sections, only fundamenta l  aspects of wave behavior  
are discussed on the  basis of wave bundle considera- 
tions. A fur ther  development  of the  theory  and 
detailed discussion of 'PendellSsung'  phenomena will 
be reserved for the next  paper.  

2. Pre l iminary  considerat ions  

The usual dynamical  theory  m a y  be summarized as 
follows. First ,  we assume a plane wave as an incident 
wave (PW assumption).  As crystal  waves we consider 
a sort of Bloch wave function. This is a general type  of 
wave in a medium of periodically dis t r ibuted scatterers.  
The incident wave and the crystal  waves are connected 
by  boundary  conditions including the tangent ia l  con- 
t inu i ty  of wave vectors a t  the  surfaces of the  crystal  
(TC assumption).  In  the surrounding vacuum,  we 



N. K A T  O 527 

obta in  waves which correspond to the observed trans- 
mi t ted  and diffracted waves. 

We are here concerned with electron-microscope 
exper iments  and X-ray  section topograph experiments.  
The main  purpose of this section is to criticize the 
P W  and TC assumptions in both cases. 

(a) Plane wave assumption 
If we pick up a coherent wave in an incident  beam 

it is obvious tha t  such a wave is a single spherical 
wave modified by a coll imation system in the X-ray  
case, and  a modified plane wave produced by  a con- 
denser lens in the electron case. The problem is to 
specify to what  extent  these waves m a y  be approx- 
imated  by an ideal plane wave. Two conditions must  
be satisfied for such an approximation.  The first is 

.dO > ~20, (1) 

where AI 0 is an angular  width  of reflection based upon 
the ordinary  dynamica l  theory and  -Q0 is an angle 
in which the angular  spectrum of the coherent incident  
wave takes an appreciable value. If condition (1) does 
not apply,  we are no longer restricted to considering 
only plane waves making  a given angle of incidence 
upon the crystal.  

~0 can be approximated  by the geometrical angular  
width of the incident  beam, w, if it  is not ext remely 
small. In  the electron case/ I  0 _~ 10 -2 rad. and w m a y  
be less t han  10 -3. On the other hand,  in the X-ray  
case /10_  ~ 10 -5 and w z; 10-4 under  ordinary exper- 
imenta l  conditions of single-crystal diffraction. Thus 
(1) is in general satisfied nicely for electrons but  not 
for X-rays.  

The second condition is 

f >> s ,  (2) 

where f is a width in which the phase of the incident  
wave along a plane m a y  be considered approximate ly  
constant,  and s is an effective crystal  size. In  electron 
diffraction f is of the order of 200# (the size of a dia- 
phragm placed in the condenser lens) and s is of the 
order of 103/~. Hence condition (2) is easily satisfied. 

In  the X-ray  case, f should be considered to be of 
the order of the d iameter  of the first Fresnel  zone of 
a spherical wave, i.e., 2V(RL), where ~t is the wave 
length and  L is the distance between the X-ray  source 
and  the specimen. The effective crystal  size s should 
be of order L/I 0. Thus, it  turns  out tha t  the condition 
(2) m a y  be expressed as 

2V'(]t/L ) > z_lO. (2') 

If we assume a set of reasonable figures, ~ = 1 0  -s 
era., L = 3 0  cm. and ~0___ lO-S rad., condition (2') is 
barely satisfied. 

(b) Tangential continuity assumption 
The TC assumption is equivalent  to assuming an 

nf ini te ly  extended crystal surface. A l imited lateral  

size s causes diffraction at  the surface. The angular  
broadening of wave vectors due to this  diffraction 
effect m a y  be es t imated crudely as 2,/s according to 
well-known optical principles. For this  broadening to 
be neglected it is necessary tha t  

A O >> k/s. (3) 

In  the electron case, the wave length is of the order 
of 0.05 A. Thus, again condition (3) is well satisfied. 
In  the X-ray  case, again es t imat ing s as LAO, it  turns 
out tha t  condition (3) is equivalent  to 

AO > ~/(k/L). (3') 

This is the reverse condition of (2') except for a 
numerical  factor of no great significance. As seen above, 
in most X-ray  cases the TC assumption is not  fulfilled. 

Actually,  the TC assumption loses its meaning in 
a case where the P W  assumpt ion is not adequate.  
Further ,  equat ion (3) or (3') imply  tha t  even if the 
geometrical aperture w can be reduced to less than  A0 
by a narrow slit system, we have to give up the TC 
assumption because s should then  be es t imated by Lw. 
We will discuss this  point  again in Section 6. 

3. General  formulat ion  

(a) Incident waves 
First ly,  we consider a scalar wave field such as is 

applicable to electrons. We take as incident  wave 

~ = I f ~ : F ( K )  expi(K.r)dKxdKy, (4) 

where Kx and Ky are x and y components of the wave 

vector K, and 2'(K) is a weight funct ion expressing 
an angular  spectrum of the wave field ~b. Equat ion  (4) 
is the most general form for waves t ravel ing along the 
positive z direction which satisfies the Helmhol tz  
wave equation. (See Stratton,  1941a.) Three examples 
of F m a y  be considered: 

(i) F~(~,) = ~ ( ~ -  ~e) .  (5) 

In this case, obviously, equat ion (4) means  a plane 
wave. Wi th  such, the present  theory becomes equiv- 
alent  to the ordinary  plane-wave theory. 

(ii) FL(K)=f fexp i{ (K-Ke) . rs}drs ,  (6) 
S 

where S means the slit aperture or the incident  surface 
and the range of integrat ion covers the area S. This 
formalism becomes essential ly the same as tha t  of the 
dynamica l  theory for a polyhedral  crystal  in the 
electron case. (See Kato,  1952a.) : 

(iii) The spherical wave, Cs. Using the s tandard  
Fourier  representat ion of a spherical wave we can 
show tha t  
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Cs = exp iKr/4~r (7) 

i exp i(Kxx + Kyy + Kz ) 
- 8-~ J J J ~ K~+ K~+ K~-  K 2 dKzdKydKz 

_ 1  ff+°~expi(K.r) dKxdKy (8) 
8~ ~ _~ K~ 

Since we are only concerned with a t raveling wave 
of finite ampl i tude  along the + z  direction, K~ is 
assumed to be real positive or imaginary  positive. 
Comparing with equation (4), it  turns out tha t  for a 
spherical wave 

^ 

Fs(K)=i/(8z~2K cos (K ^ z) ) .  (9) 

Now the main  applicat ion of the present theory is 
to the  X-ray  case. Thus we have to consider electro- 
magnetic  fields. The most general form of transverse 
.vector fields can be expressed by  a combinat ion of the 
following functions : 

' M = i f ~ : F ( I ( ) [ a x K j e x p i ( K ' r ) d K ~ d K y  

I I ~ :  F(I~)[[a × K] x ~:] expi(K.r)dKxdKu, (I0) N= 

where a is an arbitrary constant vector. (Stratton, 
1941b). If we use M for expressing a magnetic vector 
H, N represents the corresponding electric vector E 
since E is proportional to rot H. 

Electromagnetic waves emitted from an atomic 
source can be expressed to order 1/r as follows (see 
Shift, 1948) 

H~ = i g ¢ ~ [ J  × ~] 

E~ = igqi~[[J x ~] x ~],  (11) 

where J is a constant  vector proportional to an 
induced current due to a spontaneous t ransi t ion of 
an atom. If  we define operators 

2I~r= [J  x V] 

N= 1/(iK)[[J x V] x V] (12) 

we can show that  

Es ~/gq)~ (13) 

neglecting quanti t ies  of order 1/r '2. 
Therefore, 

I f  + ~  ^ .X Is" iK  Fs(K)[J  xI~] exp i(K.r)dK~dKy 
oy e ] - - o o  

Es ~ i f s (K) [ [ J  x K] x K] exp i(K. r)dIG:dKy. 
• 0 / - - 0 o  

(14) 

As shown in the Appendix,  s imilar  relations to 
equat ion (13) hold between scalar and vector wave 
fields which are diffracted by the same slit system 
provided tha t  Kirchhoff 's  approximat ion is assumed 

concerning the boundary  conditions. Thus, we can 
easily construct the vector field from the scalar field. 

In  the following, for simplicity,  we t reat  a single 
Bragg reflection. Therefore, we can separate the vector 
field into two polarization components:  one parallel  
and the  other perpendicular  to the  net  plane con- 
cerned. Thus, each field component  can be t reated as 
a scalar wave. Including polarization factors such as 

[J  × K] and [[J x K] × K] in the weight function F(K),  
each polarization component  has generally the form 
shown by  equation (4). Therefore, we t reat  hereafter  
scalar wave fields only. There is no loss of generali ty.  

(b) Waves in the crystal 
As shown in equat ion (4), a general type  of incident  

wave can be expressed as a superposition of plane 
waves. Each component  wave excites a set of waves 
in the crystal  which can be predicted correctly b y  the 
ordinary dynamica l  theory for a plane wave. The 
ampl i tude  densities of the component  crystal  waves 
are as follows: 

Transmi t ted  waves: 

d(ol)=C(o ') exp i ( ( K -  k(01)) • re} 
g(0 ~) = C(0 e) exp i((K - ke2)) • r e} (15) 

Diffracted waves" 

d(gD = C(g 1) exp i { ( K -  k(o~)) • re} 

dT)--- C7 ) exp i{(K- k(02)) • re}, (16) 

where k00) ( j =  1 or 2) are the t ransmi t t ed  wave vec- 
tors; these satisfy the equat ion of the so-called disper- 
sion surface, 

(k~-K2)  K2sinz~@ i 0 
(17) 

K 2 sin Z~v~ (k~ - K 2) 

E 

6 0 
Fig. l. Dispersion surfaces and coherent wave points. L =Laue 

point of kinematical theory. L d =Laue point of dynamical 
theory, n--normal of the incident surface, v=direction of 
wave propagation. Interference occurs between D- and D'- 
wave in electron cases (ordinary plane wave theory) and 
between D- and D-wave in X-ray cases (spherical wave 
theory}. 
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with 
kg= k 0 + 2 ~ g .  (18) 

In this expression s ing  is the polarization factor 
resulting from crystal reflection and Vg is the gth 
order Fourier coefficient of polarizability (X-ray case) 
or crystal potential (electron case). Equation (17) 
represents a surface of fourth order in k0 having a 
rotation axis ~,. Usually, however, it is approximated 
by a cylindrical hyperbolic surface near the vicinity 
of a Bragg reflection as shown in Fig. 1. The vectors 
k(j) and K are connected by a TC-condition, so tha t  
K - k(07) is always perpendicular to the incident surface. 
The incident surface is specified by the radius vector 
r,. Also, C(0 j) and C(j ) are the amplitudes of crystal 
waves. Their explicit expressions will be given in the 
next paper as functions of K. 

Thus, the crystal wave for a general type of incident 
wave can be expressed by a superposition of waves 
of types (15) and (16) as follows: 

Transmitted waves : 

~(0 j)= fg+°°F(K)d~o])exp i(k(j)'r)dKzdKy. (19) 
~ O O  

Diffracted waves: 

if ~;)= F(K/d~;) exp i(k~;)-r/dg~dK~. (2O) 

(c) Vacuum waves fl'om the exit surface of the crystal 
In a similar way we can easily write the vacuum 

waves which correspond to the observed transmit ted 
and diffracted waves. The results are 

f l °° ^ ¢ 0 ) =  E(K)d(0~) exp i((k(oJ)-Ko).ra} exp i(S0.r)  
- - O O  

× dKx dKy. (21) 

¢(g~) = F(K)d(j) exp i{(k(g ~?- Kg)-ra} exp i(Kg. r) 

x dKxdKv, (22) 
where 

IK0f= IKgI=K.  (23) 

The vectors Ko and K~ are related to k(0~) and k(g ~) by 
the TC-conditions at the exit surface of the crystal, 
and the vector ra indicates a point in the exit surface. 

4. Wave bundle  cons iderat ions  
According to equations (19) and (20) the crystal waves 
have the form 

= H(K) exp i(K-re) exp i{k. ( r -  re)}dKxdKv. 
- - o o  (24) 

**~ ( ^ . 

where H(f() stands for either F(K)C(0 j) or F(K)C(g ~) and 
k stands for k0 or kg. Generally this is a very com- 
plicated wave field which, however, becomes simple 
at  positions deep inside the crystal. In order to see 
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this, consider a wave bundle whose wave vectors are 
specified by wave points distributed within a region 
~K~ around a point D (see Fig. 1). Since the dispersion 
surface can be approximated by a cylindrical surface, 
the crystal wave may also be approximated essentially 
by a cylindrical wave. Thus, for the present, we con- 
sider the problem in the x-z plane which is perpen- 
dicular to the cylindrical axis. If we take ~Kz suf- 
ficiently small, we may approximate as follows: 

H ( K ) -  H(D) 

(K. re) = {K(E). re*} 

k = k ( D ) + T ,  (25) 

where E is the wave point of an incident plane wave 
connected with D by the TC condition. The vector re* 
is tha t  particular vector re which is parallel to K(E). 
The vector ~ lies in the tangential plane of the disper- 
sion surface at D. Thus, the wave bundle due to 
6K~ is 

5qD--H(D) exp i{K(E)-r*} exp i(k(D).  ( r -  r*)} 

t exp i ( ' r . ( r - r * ) } d K , .  (26) X 
,,~eK x 

This integral takes an appreciable value only when 
r - r e *  is nearly parallel to the normal v of the "r-plane. 
Thus, the wave bundle 8 9 propagates in the direc- 
tion v. This result is essentially the same as that  
discussed previously for electron diffraction (Kato, 
1952b). 

The lateral width, g, of this wave bundle defined by 
equation (26) is given crudely by 1/5Kz in accord 
with usual optical-diffraction principles. With increase 
of SKz, however, approximations (25) no longer hold, 
and the wave bundle becomes broader due to bending 
of the dispersion surface. Actually, if we neglect the 
diffraction effect (broadening due to limitation of 5K~) 
the geometrical beam size g' would be determined by 
/ = J r - r *  I times the angular range W of directions v 
within the region 5K~. In fact, we have always a 
certain minimum size gm determined by balancing the 
geometrical beam size g' and diffraction width 1/(~K, 
i.e. 

gm=lWm=-lW(wm)= l/(K~o~n) , (27) 

where corn stands for tha t  particular value of the 
angular width (5K~/K) which satisfies condition (27). 

The waves outside corn do not essentially interfere 
with the waves inside win; thus, gm gives an order of 
magnitude of the lateral dimension of coherence of a 
wave bundle which propagates in a given direction. 

Since g and g' depend upon K and l, and the func- 
tional form of W depends upon the point D, g~ also 
depends upon l, K and D. I t  should be expected that  
gm increases with 1 and ~, and tha t  it  is a maximum 
at the apex point of the dispersion surface. In Fig. 2, 
some examples of g and g' are shown. They are cal- 
culated on the assumptions AO= 10 -6 rad. and 10-5 
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rad., K = 2 z x  l0  s cm. -1, 0 s=10-1  and D being an 
apex point. I t  will be seen tha t  the m i n i m u m  values, 
g,n, are larger t han  a few microns in regions deeper 
than  0.1 mm. within the crystal. 

100 

80 
gorg' 
Microns 

60 

I I I I i i 

~ (AO =10 -6) 

0"2 0"4 0"6 0"8 1"0 1"2 
~K,~ 

Fig. 2. The  d i f f rac t ion  size g and  geometr ica l  size g' of a wave  
bundle .  Curves are based upon  equa t ions :  g=2/(KAO~), 
g'=l~ t a n  OB/(1 ~_~2)~, and  values  t a n  OB~O'I, K----2~ x l0  s 
era. -1. Hero  1 is the  dis tance of wave  p ropaga t i on  in the  
crystal .  Min imum be a m  sizes are  g iven by  the  ord ina tes  of 
the  in tersect ions  of the  g a nd  g '-curves.  

Next  we consider a conjugate wave bundle which 
corresponds to the conjugate point  D of D with respect 
to the Laue point  in Fig. 1. This wave bundle prop- 
agates in the same direction as the bundle at D. 
The difference between the centers of both wave 
bundles m a y  be est imated as 

I r * - ~ * I . - ~ L A O .  (28) 

As explained in Section 2, i t  is less t han  a few microns 
for the X-ray  case. Thus, in most  parts  of the crystal 
we f ind 

Ir~*-Y~*] < gm. (29) 

This means  tha t  we can expect interference only 
between the conjugate bundles.  Equat ion  (26) and 
similar  formulae for the conjugate bundle show tha t  
fringe separations in a direction of propagation v are 

given by  A-~ 2:~/{(k - k ) 'v}  (30) 

neglecting the difference between re* and ~*. The 
above theory describes in their  essentials the hook- 
shaped fringes which were obtained in section pat terns  
(Kate & Lang, 1959). Detai led discussion will be given 
in the subsequent  paper. 

5. F r a u n h o f e r  d i f f r ac t i on  in  a c r y s t a l l i n e  m e d i u m  

In  a vacuum, the diffracted waves due to a slit can 
be wri t ten as follows- 

~ = i f + : F ( f ( ) e x p i ( K ' r s ' e x p i ( K ' ( r - r s ) } d K , : d K u ,  
(31) 

where F(K) is given by either equat ion (A-2) or equa- 
t ion (6). 

The angular  width Q0 within which F(E:) has an 
appreciable value is related to the slit width So as 
follows, if the slit width So is small  enough, 

So ~_ 1/K~2o . (32) 

The condition of Fraunhofer  diffraction is given by 

R~0 >> So, (33) 

where R is the distance between slit and observation 
point. Under  this condition the size of the slit can be 
neglected compared with the diffraction pat tern,  and  

the angular  dis t r ibut ion of F(~:) corresponds to the 
angular  dis t r ibut ion of ¢( r ) .  

If  we compare equat ion (24) with equat ion (31), 
we can consider the crystal  waves as analogous to 
diffraction waves due to a slit which is pu t  on the  
incident  surface. Difference are the form of the weight 
function and the shape of the wave surface.~ In  a 
crystall ine medium the condition (33) should be gener- 
alized as 

1W(a)o) >> 1/Kwo, (34) 

where coo is the angular  width in which H(I() of 
equation (24) has an appreciable value, because in a 
crystall ine m e d i u m  waves propagate in the direction 
of v instead of k. Comparing this with equation (27), 
the Fraunhofer  condition can be expressed also as 

coo > co m (35) 

since W(w0) is an increasing function of coo. The 
reverse condition implies the Fresnel  diffraction con- 
dition, in a wider sense. 

I t  is worthwhile here to notice tha t  the Fraunhofer  
condition is satisfied at a much  smaller  distance 1 in 
a crystall ine medium than  in vacuum.  The reason is 
tha t  W(co0)> coo in a crystal  instead of W(-Q0)=-Q0 in 
a vacuum. In  the vic ini ty  of the exact Bragg condition 
we see tha t  

t an  OB 
W(coo) ~-- AO we.  (36) 

Therefore, in a crystal  the Fraunhofer  condition is 
satisfied at a distance which is only 10 -4 of tha t  for 
a vacuum in X-ray cases. 

6. G e n e r a l  r e m a r k s  and c o n c l u s i o n s  

(a) Relation between the light source and the crystal 
The three inequali t ies of Section 2 can now be 

represented more systemat ical ly  in reciprocal space. 
Based upon the general expression of the incident  
wave, equation (4), one extreme case of diffraction 
conditions is given by the relation (1). If  the weight 
of the coherent plane waves on the wave surface 

. . . .  

t I n  a crysta l l ine  med i um the  wave  surface is called the  
dispersion surface.  
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JKJ = K  has an appreciable value only within a very  
small  region, the plane-wave approximat ion  of the 
ordinary  theory is appropriate.  This is what  happens 
in electron diffraction. In  the a l ternat ive  extreme 
case, in which zlO ~ D0, we can assume tha t  the 
angular  spectrum of the incident  wave is homogeneous 
over the effective angular  range of z]0. A spherical 

wave approximation,  assuming Fs(I~) for the weight 
function, is then  appropriate.  

Next,  we consider in more detai l  the case in which 
an  original incident  wave is a spherical wave. This 
corresponds to the general  s i tuat ion of X-ray  diffrac- 
tion. If  we modify  a spherical wave by  a slit system, 
we obta in  a sort of diffraction wave. The angular  
width of such a diffraction wave cannot be reduced 
to roughly less t han  a certain value Din. By a similar  
a rgument  to tha t  used in obtaining the m i n i m u m  
beam size gm (see equat ion (27)), we see tha t  

D m = l / ( g S m ) = S r n / L  (37) 
or  

D,,=V(1/ (KL))  , (38) 

where L is the distance between the l ight  source and  
the slit and S~ is an op t imum slit width in order to 
obta in  a m i n i m u m  angular  width of the weight func- 
tion. According to equat ion (38) D ~  depends upon L. 
For a given distance between the l ight  source and the 
crystal  D m is at  an absolute m i n i m u m  if we place the 
slit at  the crystal  surface. Therefore, if 

AO < D i n ,  (39) 

where L is the distance between the l ight  source and 
crystal,  the plane-wave approximat ion  is fundamen-  
ta l ly  inadequate.  This s ta tement  is equivalent  to tha t  
given in Section 2 regarding condition (3'). 

Remember ing  tha t  A 0 is almost  l inear ly  proportional  
to • at  low Bragg angles we see tha t  for a large wave 
length and a large distance L it is possible for the 
reverse condition of (39) to be realized. But  then we 
have another  diff icul ty in using the usual  dynamica l  
theory. In  the usual  theory the wave surface IK0l = K  
is approximated  by a tangent ia l  plane in the v ic in i ty  
of the Laue point.* The necessary condition for this 
approximat ion  is 

KLD0 ~ < 1.  (40) 

Otherwise the phase difference between the true 
wave and the approximated  wave after t ravel ing a 
distance L becomes larger t han  2~. This condition 
cannot be satisfied in general with a spherical wave 
since Do cannot be reduced to less than  Din. If, how- 
ever, condition (39) is realized, zJ0 should be used in 
equat ion (40) as the effective width of Do, and the 
approximat ion  of neglecting the bending of the wave 
surface is permissible. Wi th  this subst i tut ion con- 
di t ion (40) becomes equivalent  to condition (2') above. 

* This is equ iva len t  to the  approx ima t ion  of assuming the  
dispersion surface to be a hyperbol ic  surface (see equa t ion  (17)). 

As discussed there, most of X-ray cases fall under this  
category. 

(b) Relation between the crystal and the observation point 
Consider the wave field at the exit  surface of the 

crystal.  In  electron cases w0 is quite small  as long as 
we use a crystal  large enough compared with the wave 
length. According to inequal i ty  (35), therefore, the 
condition for Fresnel  diffraction is realized in most 
regions of the crystal.  Moreover, according to the 
plane-wave approximat ion,  there result  two plane 
waves D O  and D ' O  as t r ansmi t t ed  waves and two 
plane waves D G  and D ' G  as diffracted waves. Thus 
we can expect sinusoidal interference fringes in both 
t ransmi t t ed  and  diffracted waves. 

On the other hand,  in the case of X-rays,  com- 
pl icated wave fields are excited in the crystal  close to 
the incident  surface because D0, and accordingly w0, 
are large compared with AO. In  the X-ray  case, 
however, w m is quite small  for most parts  of the crystal 
so tha t  the diffraction pa t te rn  is simplif ied by  the 
Fraunhofer  condition. In  other words, as shown in 
terms of wave-bundle considerations, the component 
waves are separated, propagat ing in different  direc- 
tions. Thus, we have only to consider interference 

between waves D O  and D O  for the t ransmi t ted  

wave fields and waves D G  and D G  for the diffracted 
wave fields (see Fig. 1). 

(c) Effect of absorption 
There is no objection to applying the present 

formulat ion to the case of absorbing crystals. Also, 
the fundamenta l  aspects of wave behavior  described 
above are retained. Such a conclusion is based on the 
fact tha t  crystal  waves propagate along the direction 
of the normal of the dispersion surface. This is true 
also for absorbing crystals, as shown in the previous 
paper (Kate,  1960a). Of course, for the high absorption 
case 'PendellSsung'  interference disappears because, 
as in the Bor rmann  effect, only one branch  wave 
survives, the other branch wave being rapid ly  atten- 
uated. 

A P P E N D I X  

Vector  f i e lds  of d i f f r ac ted  w a v e s  
d u e  to  a s l i t  s y s t e m  

Firs t  we consider a scalar spherical wave ~8. The 
diffracted wave ¢ due to the slit S is obtained by 
applying Kirchhoff ' s  approximat ion  to the boundary  
conditions. 

¢(r8) = ~8(r~) rs in S 

= 0  rs outside S ,  (A-l )  

where rs is a radius vector to the plane of the slit. 
The Fourier  t ransform of ¢ with this condition gives 
us immedia te ly  
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? ( .  

F ( K ) =  
S 

If the distance between the l ight  source and the slit 
is large enough this tends to FL (equation (6)) asym- 
ptotically. 

Next  we consider a vector field H~, which has the 
form of equat ion (13). The Fourier  t ransform of the 
diffracted wave due to slit S is then 

F ( K ) = f f 2 ~ l ~ ) ~ e x p ( - i ( K . r ~ ) } d r ~  (A-3) 
8 

using Kirchhoff ' s  approximat ion again. Carrying out 
the operation of ~r: 

F ( K ) =  - - I i  rot ( J ¢ ~ ) e x p  { - i ( K .  r~)}drs 
,),) 8 

f = -  J ~  exp {- i (K. r~)}dr~  
C 

+ 
S 

I means a line integral  along the periphery where 
,) c 

of the slit, at  which ~ should be zero according to the 
boundary  conditions. Thercforc, 

F(K) = i [ J  × K]F( I ( ) .  (A-5) 
Accordingly, 

H = [ J  x V ] ¢ = M ~ b ,  (A-6a) 

since ~b has the form of equat ion (4). 

The same methods can be applied also to the electric 

field using the operator N ;  thus, 

E- -  R ~b. (A-6b) 

Repeat ing the same argument  we can conclude tha t  
the diffracted vector waves due to an a rb i t ra ry  slit 
system can be expressed in the form of equation 
(A-6a), (A-6b). 
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T h e  r e f i n e m e n t  of  t h e  Co2Als  s t r u c t u r e .  By J. B. ~EWKIRK,* P. J. BLACK,~ and A. DAMJ~_NOVlC,~: Crystallo- 
graphic Laboratory, Cavendish Laboratory, Cambridge, England 

(Received 27 May 1959) 

The Co2A15 compound has a hexagonal unit cell with 
d~nensions : 

a=7.6560 A, c=7.5932 • . 

The structure was originally determined from powder 
photographs taken with Fe Ka radiation in a 19 cm. 
camera. Systematic absences were consistent with the 

* Now at Research Laboratory, General Electric Company, 
Schenectady, N.Y., U. S. A. 

t Now at the Physics Department, University of Bir- 
mingham, England. 

Now at the Institute 'Boris Kidri~', Belgrade, Yugo- 
slavia. 

space group D~h-P63/mmc, There are 28 atoms por unit 
cell in the following positions (Bradley & Chang, 1938): 

2A11 in 2(a): 0 , 0 ,0 ;  
6A12 in 6(h): x, 2x,~ with x=0"467; 

12A13 in 12(k): x, 2x, z with x=0.196, z=-O.061;  
2Co 1 in 2(d): §,½,¼; 
6Co2 in 6(h): x, 2x, ¼ with x=0"128. 

No statement was made on the accuracy of the atomic 
parameters, nor was the reliability index given. 

Compounds with similar structures have been reported 
in some other systems. The structure of ~(A1FeNi) with 


