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Substitution of (42) into (38) now gives s and so which,
in this case, immediately produce the n, through (24)
since B! is the identity operation. Because reflection
to a given point on the film occurs twice, correspond-
ing to the + ambiguity in equation (42), both dif-
fraction conditions must be considered in an absorp-
tion correction.

I would like to express to Prof. B. C. Carlson my
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appreciation for his several, valuable discussions con-
cerning coordinate systems.
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A Theoretical Study of Pendellosung Fringes. Part 1. General Considerations

By N.Kato

(Recetved 19 May 1960)

The assumption of an incident plane wave is shown to be not adequate for single-crystal experiments
of X-ray diffraction (Laue case). A dynamical theory of diffraction is formulated for a general type
of monochromatic incident wave. Fundamental aspects of wave behavior are discussed in terms of
wave-bundle considerations. Diffraction phenomena are classified by 46 (an angular width of single-
crystal reflection) and , (a width in which the angular spectrum of an incident coherent wave
takes an appreciable value). If 46 > Q,, a plane-wave assumption is adequate. This is usually the
case for electron diffraction. If 46 < ,, a spherical wave assumption is more appropriate and most
of X.ray cases fall under this alternative. Furthermore, a criterion is given to distinguish between
Fresnel and Fraunhofer diffraction in a crystalline medium. ‘Pendellésung’ fringes of X-rays (Kato
& Lang, 1959) can be interpreted as Fraunhofer diffraction, while those of electrons are observed
in a Fresnel diffraction region. The essential features of section patterns, particularly ‘hook-shaped’
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fringes, can now be explained.

1. Introduction

In previous papers the first observations of X-ray
Pendelldsung fringes were reported (Lang, 1959; Kato
& Lang, 1959). In addition, new types of diffraction
fringes were obtained in section topographs under the
experimental conditions fully described. These fringes
are essentially due to interference between two kinds
of crystal waves which correspond to different branches
of the dispersion surface. Thus they have to be ex-
plained by a dynamical theory of diffraction.
‘Pendellosung’ interference effects were discovered
first in electron-microscope experiments and could be
well explained by dynamical theory.* Thus it seemed
quite natural to apply this theory to X-rays because
it is generally accepted that the theory is essentially
the same for both electron and X-ray diffraction.
However, as shown briefly in the previous paper
(Kato & Lang, 1959), section patterns cannot be
interpreted in a straightforward manner by the usual
dynamical theory. In fact, they imply that we have
to cons(\ider a divergent coherent wave instead of an

* A detailed historical survey is given in the previous paper
(Kato & Lang, 1959).

ideal plane wave as the incident wave (Kato, 19606).
The same is true for the general X-ray case, as shown
in Section 2 by a simple argument. Hence, we must
formulate the dynamical theory for a general type of
incident monochromatic wave (Section 3). This is the
main object of the present paper. In the following
sections, only fundamental aspects of wave behavior
are discussed on the basis of wave bundle considera-
tions, A further development of the theory and
detailed discussion of ‘Pendellésung’ phenomena will
be reserved for the next paper.

2. Preliminary considerations

The usual dynamical theory may be summarized as
follows. First, we assume a plane wave as an incident
wave (PW assumption). As crystal waves we consider
a sort, of Bloch wave function. This is a general type of
wave in a medium of periodically distributed scatterers.
The incident wave and the crystal waves are connected
by boundary conditions including the tangential con-
tinuity of wave vectors at the surfaces of the crystal
(TC assumption). In the surrounding vacuum, we
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obtain waves which correspond to the observed trans-
mitted and diffracted waves.

We are here concerned with electron-microscope
experiments and X-ray section topograph experiments.
The main purpose of this section is to criticize the
PW and TC assumptions in both cases.

(«) Plane wave assumption

If we pick up a coherent wave in an incident beam
it is obvious that such a wave is a single spherical
wave modified by a collimation system in the X-ray
case, and a modified plane wave produced by a con-
denser lens in the electron case. The problem is to
specify to what extent these waves may be approx-
imated by an ideal plane wave. Two conditions must
be satisfied for such an approximation. The first is

A0 > .Qo, (1)

where /0 is an angular width of reflection based upon
the ordinary dynamical theory and £ is an angle
in which the angular spectrum of the coherent incident
wave takes an appreciable value. If condition (1) does
not apply, we are no longer restricted to considering
only plane waves making a given angle of incidence
upon the crystal.

£g can be approximated by the geometrical angular
width of the incident beam, w, if it is not extremely
small. In the electron case 460 ~10-2 rad. and w may
be less than 10-3. On the other hand, in the X.ray
case A0~10-% and w « 104 under ordinary exper-
imental conditions of single-crystal diffraction. Thus
(1) is in general satisfied nicely for electrons but not
for X-rays.

The second condition is

f>s, (2)

where f is a width in which the phase of the incident
wave along a plane may be considered approximately
constant, and s is an effective crystal size. In electron
diffraction f is of the order of 200y (the size of a dia-
phragm placed in the condenser lens) and s is of the
order of 10% A. Hence condition (2) is easily satisfied.

In the X-ray case, f should be considered to be of
the order of the diameter of the first Fresnel zone of
a spherical wave, i.e., 2)/(AL), where 4 is the wave
length and L is the distance between the X-ray source
and the specimen. The effective crystal size s should
be of order LA6. Thus, it turns out that the condition
(2) may be expressed as

2/(AL) > A6 (27

If we assume a set of reasonable figures, A=10-8

cm., L=30 em. and 16~ 10-5 rad., condition (2’) is
barely satisfied.

(b) Tangential continuity assumption

The TC assumption is equivalent to assuming an
nfinitely extended crystal surface. A limited lateral

527

size s causes diffraction at the surface. The angular
broadening of wave vectors due to this diffraction
effect may be estimated crudely as A/s according to
well-known optical principles. For this broadening to
be neglected it is necessary that

A0 > Afs . (3)

In the electron case, the wave length is of the order
of 0-05 A. Thus, agaln condition (3) is well satisfied.
In the X-ray case, again estimating s as LA9, it turns
out that condition (3) is equivalent to

A0 > Y(A/L) . (3"
This is the reverse condition of (2') except for a
numerical factor of no great significance. Asseenabove,
in most X-ray cases the TC assumption is not fulfilled.

Actually, the TC assumption loses its meaning in
a case where the PW assumption is not adequate.
Further, equation (3) or (3’) imply that even if the
geometrical aperture w can be reduced to less than A6
by a narrow slit system, we have to give up the TC
assumption because s should then be estimated by Zav.
We will discuss this point again in Section 6.

3. General formulation

(@) Incident waves

Firstly, we consider a scalar wave field such as is
applicable to electrons. We take as incident wave

o (000
2=\
where K, and Ky are x and y components of the wave
vector K, and F(K) is a weight function expressing
an angular spectrum of the wave field @. Equation (4)
is the most general form for waves traveling along the
positive z direction which satisfies the Helmholtz

wave equation. (See Stratton, 1941a.) Three examples
of F may be considered:

F(K) exp i(K-r)dK.dK, )

(i) Fp(K)=6(K-K.) . ®)

In this case, obviously, equation (4) means a plane
wave. With such, the present theory becomes equiv-
alent to the ordinary plane-wave theory.

(i)  FuK)= SSSexp i{(K—K.)-rs}drs , (6)

where § means the slit aperture or the incident surface
and the range of integration covers the area S. This
formalism becomes essentially the same as that of the
dynamical theory for a polyhedral crystal 1n the
electron case. (See Kato, 1952a.)

(iii) The spherical wave, @;s. Using the standard
Fourier representation of a spherical wave we can
show that
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Ds=exp tKr(dnr ()
_ b (T exp i(Kax+ Kyy + Kz2)
T8 SS.\_OO KEr Ry ie—Ke KrdHydk
v @+00 . .
-5 SS =PI k. (8)
872 —~00 z

Since we are only concerned with a traveling wave
of finite amplitude along the +z direction, K. is
assumed to be real positive or imaginary positive.
Comparing with equation (4), it turns out that for a
spherical wave

Fy(K)=4/(8n2K cos (K A z)) . )

Now the main application of the present theory is
to the X-ray case. Thus we have to consider electro-
magnetic fields. The most general form of transverse
vector fields can be expressed by a combination of the
following functions:

M= SSW P(R)[a x K] exp (K- r)dK.dK,

—o0

oo a A
N= SS F(R)[[ax K] x K] exp i(K-r)dK.dK,, (10)
—00

where a is an arbitrary constant vector. (Stratton,
19415). If we use M for expressing a magnetic vector
H, N represents the corresponding electric vector E
since E is proportional to rot H.

Electromagnetic waves emitted from an atomic
source can be expressed to order 1/r as follows (see

Shiff, 1948) R
H,=iK®:[J x 1]

E,=iK®,[J x f]x 7], 11)

where J is a constant vector proportional to an
induced current due to a spontaneous transition of
an atom. If we define operators

M=[JxV]

N=1/(K)[[J x V]x V] (12)
we can show that -
Hs~ MO,
Es ~ N@s (13)
neglecting quantities of order 1/r2.
Therefore,
+w A A
H~ zKSS Fy(R)[JI x K] exp i(K-r)dKdK,
-0

+°° A A A
E,~ iKSS Fs(K)[[J xK]x K] exp i(K-r)dK.dK, .
o YT (14)

As shown in the Appendix, similar relations to
equation (13) hold between scalar and vector wave
fields which are diffracted by the same slit system
provided that Kirchhoff’s approximation is assumed
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concerning the boundary conditions. Thus, we can
easily construct the vector field from the scalar field.

In the following, for simplicity, we treat a single
Bragg reflection. Therefore, we can separate the vector
field into two polarization components: one parallel
and the other perpendicular to the net plane con-
cerned. Thus, each field component can be treated as
a scalar wave. Including polarization factors such as
[J % f(] and [[J x ﬁ] X f(] in the weight funetion F(K),
each polarization component has generally the form
shown by equation (4). Therefore, we treat hereafter
scalar wave fields only. There is no loss of generality.

(b) Waves in the crystal

As shown in equation (4), a general type of incident
wave can be expressed as a superposition of plane
waves. Hach component wave excites a set of waves
in the crystal which can be predicted correctly by the
ordinary dynamical theory for a plane wave. The
amplitude densities of the component crystal waves
are as follows:

Transmitted waves:
d§°=C exp {(K— k) - r.}
dP=CP exp i{(K—kP)-re}
Diffracted waves:
dP=C® exp i{(K—Kk{V)-re}
dP =CP exp i{(K—kP)-r.},
where £’ (j=1 or 2) are the transmitted wave vec-

tors; these satisfy the equation of the so-called disper-
sion surface,

(15)

(16)

(k§—K?)
| K2sin LV7

K2 sin yy, ‘

17
(kg—KZ) (17)

G 0]

Fig. 1. Dispersion surfaces and coherent wave points. L =Laue
point of kinematical theory. LZ?=Laue point of dynamical
theory. n=normal of the incident surface. » =direction_of
wave propagation. Interference occurs between D- and D’-
wave in electron cases (ordinary plane wave theory) and
between D- and D-wave in X-ray cases (spherical wave
theory).
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with Koe ko2 18 this, consider a wave bundle whose wave vectors are
9=Xo+2ng . (18) specified by wave points distributed within a region

In this expression siny is the polarization factor
resulting from crystal reflection and %, is the gth
order Fourier coefficient of polarizability (X-ray case)
or crystal potential (electron case). Equation (17)
represents a surface of fourth order in ko having a
rotation axis g. Usually, however, it is approximated
by a cylindrical hyperbolic surface near the vicinity
of a Bragg reflection as shown in Fig. 1. The vectors
k{”» and K are connected by a TC-condition, so that
K —k{is always perpendicular to the incident surface.
The incident surface is specified by the radius vector
re. Also, Cf’ and C{ are the amplitudes of crystal
waves. Their explicit expressions will be given in the
next paper as functions of K.

Thus, the crystal wave for a general type of incident
wave can be expressed by a superposition of waves
of types (15) and (16) as follows:

Transmitted waves:

o= SS‘ F(K)dS exp i(kP-1)dK,dK, . (19)

—00

Diffracted waves:

+w A o -
qu‘):gg F(K)d’ exp i(k{>-r)dK,dK, . (20)

(c) Vacuum waves from the exit surface of the crystal

In a similar way we can easily write the vacuum
waves which correspond to the observed transmitted
and diffracted waves. The results are

et 4
PN = Sg F(K)d? exp i{(k{’ — Ko) 1o} exp i(Ko-r)
xdK.dKy, . (21)
too
P = SS F(R)AY exp i{(KP —K,) 1o} exp i(Ky 1)
x dK,dKy , (22)
where
[Ko| =Kol =K . (23)

The vectors Ko and K, are related to k{” and k{’ by
the TC-conditions at the exit surface of the crystal,
and the vector r, indicates a point in the exit surface.

4. Wave bundle considerations

According to equations (19) and (20) the crystal waves
have the form

Q= \'S_’-oo H(K) exp 1'(K~ re) exp 7:{1{' (r__ re)}dszKy .
o d—oc0 (24)

where H(K) stands for either F(ﬁ)C(()’) or F(f()O;f) and
k stands for ko or k,. Generally this is a very com-
plicated wave field which, however, becomes simple
at positions deep inside the crystal. In order to see

0K, around a point D (see Fig. 1). Since the dispersion
surface can be approximated by a cylindrical surface,
the crystal wave may also be approximated essentially
by a cylindrical wave. Thus, for the present, we con-
sider the problem in the z— plane which is perpen-
dicular to the cylindrical axis. If we take 8K, suf-
ficiently small, we may approximate as follows:

HEK) = H(DD)
(K-r.) ={K(E)-r}}
k = k(D)+T, (25)

where & is the wave point of an incident plane wave
connected with D by the TC condition. The vector r*
is that particular vector r, which is parallel to K(E).
The vector T lies in the tangential plane of the disper-
sion surface at D. Thus, the wave bundle due to
0K, is

d¢=H(D) exp i{K(E) -r}} exp i{k(D)- (r —r¥)}

X S exp i{T-(r—r¥)}dK.. (26)

JoE,

This integral takes an appreciable value only when
r—rf is nearly parallel to the normal v of the T-plane.
Thus, the wave bundle dp propagates in the direc-
tion v. This result is essentially the same as that
discussed previously for electron diffraction (Kato,
1952b).

The lateral width, g, of this wave bundle defined by
equation (26) is given crudely by 1/6K; in accord
with usual optical-diffraction principles. With increase
of K., however, approximations (25) no longer hold,
and the wave bundle becomes broader due to bending
of the dispersion surface. Actually, if we neglect the
diffraction effect (broadening due to limitation of 6K )
the geometrical beam size g’ would be determined by
l=|r—r¥| times the angular range W of directions v
within the region 0K,. In fact, we have always a
certain minimum size g, determined by balancing the
geometrical beam size g’ and diffraction width 1/0K,

ie. Im=IWn=IW(0m)=1/(Komn) @7)

where wn, stands for that particular value of the
angular width (0K;/K) which satisfies condition (27).

The waves outside wm do not essentially interfere
with the waves inside wn; thus, g» gives an order of
magnitude of the lateral dimension of coherence of a
wave bundle which propagates in a given direction.

Since g and ¢’ depend upon K and {, and the func-
tional form of W depends upon the point D, gm also
depends upon /, K and D. It should be expected that
gm increases with I and A, and that it is a maximum
at the apex point of the dispersion surface. In Fig. 2,
some examples of g and g’ are shown. They are cal-
culated on the assumptions A6=10-6 rad. and 10-5
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rad.,, K=27x108 cm.”1, =101 and D being an
apex point. It will be seen that the minimum values,
gm, are larger than a few microns in regions deeper
than 0-1 mm. within the crystal.

100

801 g1=1:0mm)

gorg’

Microns
60

401~ g(d0=10_5) g'(/=0'5mm) |

&2'(1=01mm)

Il
04 06 08 10 12
0K,
5=de)

0-2

Fig. 2. The diffraction size g and geometrical size g’ of a wave
bundle. Curves are based upon equations: g=2/(KA6%),
g'=I& tan Og/(1 +£%)3%, and values tan fg=0-1, K =27 x 108
cm.~}, Here ! is the distance of wave propagation in the
crystal. Minimum beam sizes are given by the ordinates of
the intersections of the g and g’-curves.

Next we consider a conjugate wave bundle which
corresponds to the conjugate point D of D with respect
to the Laue point in Fig. 1. This wave bundle prop-
agates in the same direction as the bundle at D.
The difference between the centers of both wave
bundles may be estimated as

Ir* —T%| ~ LA6 . (28)

As explained in Section 2, it is less than a few microns
for the X-ray case. Thus, in most parts of the crystal
we find —

Ir¥ —T¥| <gm . (29)
This means that we can expect interference only
between the conjugate bundles. Equation (26) and
similar formulae for the conjugate bundle show that
fringe separations in a direction of propagation v are

given by A~ 2n/{(k—K)-v} (30)

neglecting the difference between r* and r*. The
above theory describes in their essentials the hook-
shaped fringes which were obtained in section patterns
(Kato & Lang, 1959). Detailed discussion will be given
in the subsequent paper.

5. Fraunhofer diffraction in a crystalline medium

In a vacuum, the diffracted waves due to a slit can
be written as follows:

D= SS+°° F(ﬁ) exp ¢(K-rs) exp i{K: (r—ry)}dK.dKy,
- (31)
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where F(K) is given by either equation (A-2) or equa-
tion (6). R

The angular width £ within which F(K) has an
appreciable value is related to the slit width So as
follows, if the slit width Sy is small enough,

The condition of Fraunhofer diffraction is given by
RQy > 8, (33)

where R is the distance between slit and observation
point. Under this condition the size of the slit can be
neglected compared with the diffraction pattern, and

A

the angular distribution of F(K) corresponds to the
angular distribution of @(r).

If we compare equation (24) with equation (31),
we can consider the crystal waves as analogous to
diffraction waves due to a slit which is put on the
incident surface. Difference are the form of the weight
function and the shape of the wave surface.t In a
crystalline medium the condition (33) should be gener-

alized as IW(wo) > 1/ Ko, (34)

where wo is the angular width in which H(f{) of
equation (24) has an appreciable value, because in a
crystalline medium waves propagate in the direction
of v instead of k. Comparing this with equation (27),
the Fraunhofer condition can be expressed also as

(35)

Wwo> Wm

since W(wo) is an increasing function of wo. The
reverse condition implies the Fresnel diffraction con-
dition, in a wider sense.

It is worthwhile here to notice that the Fraunhofer
condition is satisfied at a much smaller distance [ in
a crystalline medium than in vacuum. The reason is
that W(wo)> woe in a crystal instead of W(Q2p)=£, in
a vacuum. In the vicinity of the exact Bragg condition

we see that
tan Og

460

Therefore, in a crystal the Fraunhofer condition is
satisfied at a distance which is only 10-4 of that for
a vacuum in X-ray cases.

W(wo) ~ wo - (36)

6. General remarks and conclusions

(a) Relation between the light source and the crystal
The three inequalities of Section 2 can now be
represented more systematically in reciprocal space.
Based upon the general expression of the incident
wave, equation (4), one extreme case of diffraction
conditions is given by the relation (1). If the weight
of the coherent plane waves on the wave surface

t In a crystalline medium the wave surface is called the
dispersion surface.
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|K|=K has an appreciable value only within a very
small region, the plane-wave approximation of the
ordinary theory is appropriate. This is what happens
in electron diffraction. In the alternative extreme
case, in which 40 < £y, we can assume that the
angular spectrum of the incident wave is homogeneous
over the effective angular range of A4f. A spherical

wave approximation, assuming Fs(K) for the weight
function, is then appropriate.

Next, we consider in more detail the case in which
an original incident wave is a spherical wave. This
corresponds to the general situation of X-ray diffrac-
tion. If we modify a spherical wave by a slit system,
we obtain a sort of diffraction wave. The angular
width of such a diffraction wave cannot be reduced
to roughly less than a certain value Q,. By a similar
argument to that used in obtaining the minimum
beam size g, (see equation (27)), we see that

Qum=1/(KSm)=Sm/L
Qn=y(1/(KL)),

(37)

or (38)
where L is the distance between the light source and
the slit and S, is an optimum slit width in order to
obtain a minimum angular width of the weight func-
tion. According to equation (38) £2., depends upon L.
For a given distance between the light source and the
crystal 2 is at an absolute minimum if we place the
slit at the crystal surface. Therefore, if

A0<Qm, (39)
where L is the distance between the light source and
crystal, the plane-wave approximation is fundamen-
tally inadequate. This statement is equivalent to that
given in Section 2 regarding condition (3°).
Remembering that 46 is almost linearly proportional
to A at low Bragg angles we see that for a large wave
length and a large distance L it is possible for the
reverse condition of (39) to be realized. But then we
have another difficulty in using the usual dynamical
theory. In the usual theory the wave surface {Ko|=K
is approximated by a tangential plane in the vicinity
of the Laue point.* The necessary condition for this

approximation 1s KLO<1. (40)

Otherwise the phase difference between the true
wave and the approximated wave after traveling a
distance L becomes larger than 2z. This condition
cannot be satisfied in general with a spherical wave
since Qo cannot be reduced to less than Q. If, how-
ever, condition (39) is realized, 46 should be used in
equation (40) as the effective width of o, and the
approximation of neglecting the bending of the wave
surface is permissible. With this substitution con-
dition (40) becomes equivalent to condition (2) above.

* This is equivalent to the approximation of assuming the
dispersion surface to be a hyperbolic surface (see equation (17)).
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As discussed there, most of X-ray cases fall under this
category.

(b) Relation between the crystal and the observation point

Consider the wave field at the exit surface of the
crystal. In electron cases wo is quite small as long as
we use a crystal large enough compared with the wave
length. According to inequality (35), therefore, the
condition for Fresnel diffraction is realized in most
regions of the crystal. Moreover, according to the
plane-wave approximation, there result two plane
waves DO and D’O as transmitted waves and two
plane waves DG and D'G as diffracted waves. Thus
we can expect sinusoidal interference fringes in both
transmitted and diffracted waves.

On the other hand, in the case of X-rays, com-
plicated wave fields are excited in the crystal close to
the incident surface because (2o, and accordingly wo,
are large compared with A46. In the X-ray case,
however, w» is quite small for most parts of the crystal
so that the diffraction pattern is simplified by the
Fraunhofer condition. In other words, as shown in
terms of wave-bundle considerations, the component
waves are separated, propagating in different direc-
tions. Thus, we have only to consider interference

between waves DO and DO for the transmitted

wave fields and waves DG and DG for the diffracted
wave fields (see Fig. 1).

(¢} Effect of absorption

There is no objection to applying the present
formulation to the case of absorbing crystals. Also,
the fundamental aspects of wave behavior described
above are retained. Such a conclusion is based on the
fact that crystal waves propagate along the direction
of the normal of the dispersion surface. This is true
also for absorbing crystals, as shown in the previous
paper (Kato, 1960a). Of course, for the high absorption
case ‘Pendellssung’ interference disappears because,
as in the Borrmann effect, only one branch wave
survives, the other branch wave being rapidly atten-
uated.

APPENDIX

Vector fields of diffracted waves
due to a slit system

First we consider a scalar spherical wave @;s. The
diffracted wave @ due to the slit S is obtained by
applying Kirchhoff’s approximation to the boundary
conditions.

D(r;5) = Ds(r5)

=0

rsin S

rs outside S, (A-1)
where rs is a radius vector to the plane of the slit.
The Fourier transform of @ with this condition gives
us immediately



PR)= S \'qus(rs) exp {—i(K-1o)}drs . (A-2)

If the distance between the light source and the slit
is large enough this tends to F1 (equation (6)) asym-
ptotically.

Next we consider a vector field H;, which has the
form of equation (13). The Fourier transform of the
diffracted wave due to slit § is then

~

F(K)= SSS M D exp {—i(K-r5)}drs  (A-3)

using Kirchhoff’s approximation again. Carrying out
the operation of M:

F(K)=— SS rot (J&;) exp {—i(K-rs)}drs
S
=_S J®, exp {—i(K-r;)}dr,
C
+ SS [P, xiK] exp {—i(K-rs)}drs, (A-4)
S

where S means a line integral along the periphery
¢

of the slit, at which @; should be zero according to the
houndary conditions. Thercfore,

F(K)=i[J xK]F(K) .
H=[IxV]®=MD,

since @ has the form of equation (4).

(A-5)

Accordingly, (A-6a)
~6a
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The same methods can be applied also to the electric
field using the operator N ; thus,

E=N®. (A—6b)

Repeating the same argument we can conclude that
the diffracted vector waves due to an arbitrary slit
system can be expressed in the form of equation
(A-6a), (A-6b).
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The refinement of the Co,Al; structure. By J. B. NEwkIrk,* P.J. BLack,t and A. Damsanovic,} Crystallo-
graphic Laboratory, Cavendish Laboratory, Cambridge, England

(Recerved 27 May 1959)

The Co,Al; compound has a hexagonal unit cell with

dimensions:
a="T7656, A, c=17-593, A .

The structure was originally determined from powder
photographs taken with Fe K« radiation in a 19 cm.
camera. Systematic absences were consistent with the

* Now at Research Laboratory, General Electric Company,
Schenectady, N.Y., U.S.A.

1 Now at the Physics Department, University of Bir-
mingham, England.

I Now at the Institute ‘Boris Kidri¢’, Belgrade, Yugo-
slavia.

space group Dy~P6;/mme, There are 28 atoms per unit
cell in the following positions (Bradley & Cheng, 1938):

24l in  2(a): 0,0, 0;

6 Al, in 6(h): z, 2z, } with 2=0-467;

12 Al; in 12(k): z, 2z, 2 with £=0-196, z= —0-061;
2Co, in 2(d): —23-, %, f};

6Co, in 6(h): x, 2¢, 3 with £=0-128.

No statement was made on the accuracy of the atomic

parameters, nor was the reliability index given.
Compounds with similar structures have been reported

in some other systems. The structure of nz(AlFeNi) with



